Using liquid phase epitaxy (LPE) technique (111) yttrium iron garnet (YIG) films with thicknesses of ≈100 nm and surface roughnesses as low as 0.3 nm have been grown as a basic material for spin-wave propagation experiments in microstructured waveguides. The continuously strained films exhibit nearly perfect crystallinity without significant mosaicity and with effective lattice misfits of ∆a ⊥ /a s ≈ 10 −4 and below. The film/substrate interface is extremely sharp without broad interdiffusion layer formation. All LPE films exhibit a nearly bulk-like saturation magnetization of (1800±20) Gs and an 'easy cone' anisotropy type with extremely small in-plane coercive fields <0.2 Oe. There is a rather weak in-plane magnetic anisotropy with a pronounced six-fold symmetry observed for saturation field <1.5 Oe. No significant out-of-plane anisotropy is observed, but a weak dependence of the effective magnetization on the lattice misfit is detected. The narrowest ferromagnetic resonance linewidth is determined to be 1.4 Oe @ 6.5 GHz which is the lowest values reported so far for YIG films of 100 nm thicknesses and below. The Gilbert damping coefficient for investigated LPE films is estimated to be close to 1 × 10 −4 .
The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and the SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high‐pressure polymorphs in rock‐forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high‐pressure polymorphs of α‐quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α‐quartz in situ by synchrotron powder X‐ray diffraction. Phase transitions of α‐quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s−1, experiments reveal that α‐quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.