Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high‐pressure polymorphs in rock‐forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high‐pressure polymorphs of α‐quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α‐quartz in situ by synchrotron powder X‐ray diffraction. Phase transitions of α‐quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s−1, experiments reveal that α‐quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.
The pressure-induced amorphization of the two endmembers of the plagioclase ((Na1-xCax)Al1+xSi3-xO8) solid-solution, anorthite (CaAl2Si2O8) and albite (NaAlSi3O8), has been studied as a function of compression rate by means of time-resolved powder diffraction. Anorthite and albite were compressed in a diamond anvil cell to 80 GPa at multiple rates from 0.05 GPa/s to 80 GPa/s. The amorphization pressure decreases with increasing compression rate. This negative ` strain rate sensitivity indicates a change in deformation mechanism in the plagioclase solidsolution endmembers from brittle to ductile with increasing compression rate. The presented data support the previously proposed shear deformation mechanism for the amorphization of plagioclase. Furthermore, amorphization progresses over a wide pressure range suggesting heterogeneous amorphization, similar to observations based on recovered material from shockcompression experiments of plagioclase. Our experiments support the contention that amorphization pressures for plagioclase may occur at lower pressures than usually considered.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two‐stage light‐gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane‐driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high‐temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.
Coesite and stishovite are high‐pressure silica polymorphs known to have been formed at several terrestrial impact structures. They have been used to assess pressure and temperature conditions that deviate from equilibrium formation conditions. Here we investigate the effects of nonhydrostatic, dynamic stresses on the formation of high‐pressure polymorphs and the amorphization of α‐quartz at elevated temperatures. The obtained disequilibrium states are compared with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We analyzed phase transformations starting with α‐quartz in situ under dynamic loading utilizing a membrane‐driven diamond anvil cell. Using synchrotron powder X‐ray diffraction, the phase transitions of SiO2 are identified up to 77.2 GPa and temperatures of 1160 K at compression rates ranging between 0.10 and 0.37 GPa s−1. Coesite starts forming above 760 K in the pressure range between 2 and 11 GPa. At 1000 K, coesite starts to transform to stishovite. This phase transition is not completed at 1160 K in the same pressure range. Therefore, the temperature initiates the phase transition from α‐quartz to coesite, and the transition from coesite to stishovite. Below 1000 K and during compression, α‐quartz becomes amorphous and partially converts to stishovite. This phase transition occurs between 25 and 35 GPa. Above 1000 K, no amorphization of α‐quartz is observed. High temperature experiments reveal the strong thermal dependence of the formation of coesite and stishovite under nonhydrostatic and disequilibrium conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.