ABSTRACT:The relationship between modern clinical diagnostic data, such as from radiographs or computed tomography, and the temporal biomechanical integrity of bone fracture healing has not been well-established. A diagnostic tool that could quantitatively describe the biomechanical stability of the fracture site in order to predict the course of healing would represent a paradigm shift in the way fracture healing is evaluated. This paper describes the development and evaluation of a wireless, biocompatible, implantable, microelectromechanical system (bioMEMS) sensor, and its implementation in a large animal (ovine) model, that utilized both normal and delayed healing variants. The in vivo data indicated that the bioMEMS sensor was capable of detecting statistically significant differences (p-value <0.04) between the two fracture healing groups as early as 21 days post-fracture. In addition, post-sacrifice microcomputed tomography, and histology data demonstrated that the two model variants represented significantly different fracture healing outcomes, providing explicit supporting evidence that the sensor has the ability to predict differential healing cascades. These data verify that the bioMEMS sensor can be used as a diagnostic tool for detecting the in vivo course of fracture healing in the acute post-treatment period. ß