Bi-static passive synthetic aperture radar (SAR) systems using ground broadcast and wireless network signals suffer from a low spatial resolution due to the narrow bandwidths and low carrier frequencies. By exploiting multiple distributed illuminators, multi-static passive radar has the possibility of producing high-resolution SAR images. In this paper, a two-stage image formation approach, which combines the Fourier transform and sparse reconstruction strategies, is proposed to process multi-static SAR data. This method exploits the group sparsity of the sparse scene, i.e., the observations associated with different bi-static pairs share the same support of the sparse scene but correspond to aspect-dependent scattering coefficients. Such observations are described as a number of generally disjoint sub-bands in the two-dimensional spatial frequency domain. In each sub-band, the sampling satisfies the Nyquist criterion, whereas different sub-bands are sparsely distributed. In the proposed approach, Fourier-based reconstruction is applied to the sub-band data to produce the coarse-resolution images, which are then combined to produce a high-resolution image through the exploitation of sparse reconstruction techniques. The proposed approach greatly improves the imaging quality as compared to Fourier-based reconstruction, whereas it exhibits significant reduction of the computational complexity when compared to direct application of sparse reconstruction techniques. The exploitation of block sparsity-based techniques also permits practical treatment of the angle-dependent target scattering characteristics in SAR image reconstruction. The advantages of the proposed approach are delineated using analysis and simulations.