For the sake of enhancing the exploitation of the permanently allocated, but potentially under-utilized spectral resources, sharing the frequency bands between radar and communication systems has attracted substantial attention. More explicitly, there is increasing demand for sharing both the frequency band and the hardware platform between these two functionalities, but naturally, its success critically hinges on highquality joint sensing and communications. In this paper, we firstly overview the application scenarios and the research progress in the area of communication and radar spectrum sharing, with particular emphasis on: 1) Radar-communication coexistence; 2) Dual-functional radar-communication (DFRC) systems. In the remainder of the paper, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna aided user equipment (UE) operating in a mmWave channel, which in the meantime actively detects multiple targets. Note that part of the targets also play the role of scatterers for the communication signal. Given this framework, we then propose a novel scheme for joint target search and communication channel estimation relying on the omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design an HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the potential interference imposed on the UE signals by invoking the successive interference cancellation (SIC) technique, even when the radar and communication signals share the equivalent signal-to-noise ratio (SNR). The feasibility and the efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, our discussions are summarized by overviewing the open problems in the research field of CRSS.
| The radio-frequency (RF) electromagnetic spectrum, extending from below 1 MHz to above 100 GHz, represents a precious resource. It is used for a wide range of purposes, including communications, radio and television broadcasting, radionavigation, and sensing. Radar represents a fundamentally important use of the electromagnetic (EM) spectrum, in applications which include air traffic control, geophysical monitoring of Earth resources from space, automotive safety, severe weather tracking, and surveillance for defense and security. Nearly all services have a need for greater bandwidth, which means that there will be ever-greater competition for this finite resource. The paper explains the nature of the spectrum congestion problem from a radar perspective, and describes a number of possible approaches to its solution both from technical and regulatory points of view.These include improved transmitter spectral purity, passive radar, and intelligent, cognitive approaches that dynamically optimize spectrum use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.