2021
DOI: 10.1109/tgrs.2020.3034752
|View full text |Cite
|
Sign up to set email alerts
|

TEMDnet: A Novel Deep Denoising Network for Transient Electromagnetic Signal With Signal-to-Image Transformation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
17
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 351 publications
(20 citation statements)
references
References 43 publications
1
17
0
2
Order By: Relevance
“…Although the least-squares generative adversarial network (LSGAN) [ 22 ], the conditional generative adversarial network (CGAN) [ 23 ], and other methods were used to improve the model and achieved a better denoising effect than traditional methods, there are still problems such as slow model convergence. In References [ 9 , 10 , 11 ], the authors transformed the problem of signal denoising into that of image denoising, processed the image with CNN, and achieved good results in the field of seismic signal and transient electromagnetic (TEM) signal denoising. This method will not cause large deviation in amplitude, time, and phase information after signal denoising, but it cannot achieve perfect separation of signal and noise.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Although the least-squares generative adversarial network (LSGAN) [ 22 ], the conditional generative adversarial network (CGAN) [ 23 ], and other methods were used to improve the model and achieved a better denoising effect than traditional methods, there are still problems such as slow model convergence. In References [ 9 , 10 , 11 ], the authors transformed the problem of signal denoising into that of image denoising, processed the image with CNN, and achieved good results in the field of seismic signal and transient electromagnetic (TEM) signal denoising. This method will not cause large deviation in amplitude, time, and phase information after signal denoising, but it cannot achieve perfect separation of signal and noise.…”
Section: Related Workmentioning
confidence: 99%
“…A detailed description of the signal noise reduction method based on DL will be discussed later in the second section. Although these works have achieved good results, there are still some drawbacks: (i) The perfect separation of signal and noise cannot be realized [ 9 , 10 , 11 ]; (ii) The existing noise reduction methods based on the generative adversarial network (GAN) [ 12 ] still have the problems of long training time and slow convergence speed in the training process [ 13 , 14 ]; (iii) The requirements for the number of signal sampling points are high. When the number of signal sampling points is too small and the waveform is not obvious, a satisfactory denoising effect cannot be achieved [ 15 ].…”
Section: Introductionmentioning
confidence: 99%
“…이때, 는 잡음(noise)이 추가된 습득 신호(acquired signal), 는 측정하고자 하는 이상적인 신호, 는 원하지 않지만 측 정되는 잡음이다. 여기서, 시간영역 전자탐사(transient/ time-domain EM, TEM)과 시간영역 유도분극과 같은 탐 사에서의 잡음 제거는 비유일해를 가진 불량조건 문제에서 수치 저하(forward degraded) 과정을 기반으로 진행할 수 있다 (Chen et al, 2020). 즉, 베이지안(Bayesian) 관점에서 사후 확률 분포(posteriori distribution)로서의 해인  는 일 반적으로 최대 사후 확률(maximum a posteriori, MAP) 문 제를 해결함으로써 다음과 같이 계산할 수 있다 (Zhang et al, 2017b;Kataoka and Yasuda, 2019;Delon and Houdard, 2018).…”
Section:     unclassified
“…의 탐사에서 많이 사용되고 있다(Cho, 2006). 이러한 전자 탐사는 전기비저항 탐사와 마찬가지로 전기비저항 구조를 역산하여 해석하므로 앞선 전기비저항 탐사와 유사한 과정 으로 역산을 수행할 때 심층학습을 적용하는 연구가 이뤄 지고 있으며(Kingma and Ba, 2014;Noh et al, 2020;Bang et al, 2021), 현장에서 획득하는 과정에서 발생하는 잡음 을 심층학습을 적용하여 제거하는 연구도 다수 진행되고 있다(Chen et al, 2020;Lin et al, 2019). 이외에도 전자탐 사 역산 결과에 심층학습을 적용하여 암염체의 경계를 해 석 및 예측하는 연구도 진행된 바 있다(Oh et al, 2019;Oh et al, 2020).역산진동수 영역 전자탐사 역산에 심층학습의 적용은 CO 2 포 화도 예측을 위한 수치모형자료에 CNN 방법을 적용한 Puzyrev(2019)에 의해 시작되었고, 이 방법에서는 최적화 방법으로 계산 효율성이 좋고 수렴이 빠른 아담 최적화 (Adam optimization) 알고리듬(Kingma and Ba, 2014)을 사용하였다.…”
unclassified
“…Experiments show that CIPAL is more time-saving than similar architectures. On the other hand, it helps us understand that different types of representations are very important for RSI intelligent understanding [7].…”
Section: Introductionmentioning
confidence: 99%