Technological innovations within the context of electrical and electromagnetic (EM) surveys have allowed for a rapid, efficient, and easier acquisition of a high quantity of data. Such innovations have been integral in mineral exploration and groundwater surveys. On the other hand, conventional inversion of electrical or EM survey data is computationally time-consuming and expensive. To circumvent the limitations of conventional inversion, the implementation of deep learning (DL) using improved neural networks has garnered substantial attention. In this study, we review various DL methods that can be used as substitutes for traditional inversion methods. Specifically, we investigate cases highlighting the successful implementation of DL to electrical or EM surveys and also comprehensively examine the advantages and disadvantages of such an application of DL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.