Niobium (Nb) thin films, which are potentially useful for integration into electronics and optoelectronics, were made by radio-frequency magnetron sputtering by varying the substrate temperature. The deposition temperature (Ts) effect was systematically studied using a wide range, 25–700 °C, using Si(100) substrates for Nb deposition. The direct correlation between deposition temperature (Ts) and electrical properties, surface/interface microstructure, crystal structure, and morphology of Nb films is reported. The Nb films deposited at higher temperature exhibit a higher degree of crystallinity and electrical conductivity. The Nb films’ crystallite size varied from 5 to 9 (±1) nm and tensile strain occurs in Nb films as Ts increases. The surface/interface morphology of the deposited Nb films indicate the grain growth and dense, vertical columnar structure at elevated Ts. The surface roughness derived from measurements taken using atomic force microscopy reveal that all the Nb films are characteristically smooth with an average roughness <2 nm. The lowest electrical resistivity obtained was 48 µΩ cm. The correlations found here between growth conditions electrical properties as well as crystal structure, surface/interface morphology, and microstructure, could provide useful information for optimum conditions to produce Nb thin films for utilization in electronics and optoelectronics.