Two different systems, the non-reactive Ag–diamond and the reactive Al–diamond system, were assessed by their thermal conductivity behaviour, both were fabricated by gas pressure assisted infiltration of densely packed diamond bulks with aluminium or silver and different Si-concentration and diamonds of varying particle sizes. The effect of Si-concentration on the interface thermal conductance h between Al, Ag and diamonds was investigated in dependence of temperature by measuring thermal conductivity of composites with different sized diamond particles in the temperature range from 4 K up to ambient. Composite thermal conductivities κc(T) can be as high as 860 W m-1 K-1 at roughly 100 K for Al/diamond and 1100 W m-1 K-1 for Ag–Si/diamond at approx. 150 K. Although the Si concentration in the matrix plays an eminent role for κc(T), i.e. the lower the Si concentration, the higher κc(T), interface thermal conductance is almost unaffected in the reactive Al-diamond system. Furthermore, they are close to values determined on clean model systems, i.e. sputtered and evaporated metal layers on diamond monocrystals. For Ag–diamond composites, the matrix composition of Ag–1Si seems to reflect an optimal composition, as the highest thermal conductivity κc(T) and an extraordinary higher interface conductance was achieved compared to Ag–3Si/diamond composites.