Highly advanced phase-change hybrids (PCHs), which consist of a phase-change material and conjugated polymer, were developed for new sensor and actuator applications. PCH films with excellent characteristics were obtained simply by depositing various molten paraffin waxes (PWs) in situ onto poly(diphenylacetylene) (PDPA) films with extremely large fractional free volumes. The phase-change enthalpy of the PWs in the hybrid films was quite high and remained constant over prolonged use. The PCH films underwent critical changes in both fluorescence (FL) intensity and color during the phase change of the PWs, which facilitated various sensor applications such as highly reversible writing/erasing, fingerprinting and array-type thermometer usage. In addition, a biaxially oriented polypropylene (BOPP)-supported PCH film exhibited extremely fast and highly reproducible thermomechanical actuation with reversible curling/uncurling during the phase change of the PWs. These findings will be useful for developing novel PCH materials with highly advanced functions and applications.