In recent decades, the additive manufacturing technology has made great progress in software and methods in various fields, and gradually explored in a deeper and broader manner. It has changed from the mature homogenized lattice type and model design to a non-uniform direction. It has also started to improve from the aspects of material innovation, additive manufacturing printing technology, etc., to change the additive manufacturing technology and control parameters in the manufacturing process, Furthermore, the model or part can be improved to have better mechanical properties, such as stiffness, strength and wear resistance, which provides an important research methodology for the better development of this direction. These aspects include the software used, the type of structural analysis, the software used and verification, as well as the methods applied in the study of variable density lattices and the application and verification of improved research methods. In addition, there are density design optimization, variable density lattice design and lattice geometric characteristics’ design in geometric topology optimization design. The expected design of the model or part at the design level has reached the ideal model or part, which provides both a framework and ideas for the future research direction of non-uniform lattice design and a broader field of application, and will promote the future research and development prospects of variable density lattices.