2018
DOI: 10.1134/s1063778818050046
|View full text |Cite
|
Sign up to set email alerts
|

Temperature Effect Observed for the Muon Component in the Yakutsk Cosmic-Ray Spectrograph

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 8 publications
0
2
0
2
Order By: Relevance
“…To remove this variability, for example, the parameter; G=(30 • N-30 • S)+(30 • N-30 • E) has been introduced, and data analysis has been carried out [5]. Berkova et al have also proposed to correct the Nagoya muon data for temperature variations in cosmic ray muon flux from meteorological data [6]. Note that the instruments themselves are in the thermostatic chamber and the temperature variation with respect to the trigger rate is negligible.…”
Section: Data Of the Nagoya Muon Telescopementioning
confidence: 99%
“…To remove this variability, for example, the parameter; G=(30 • N-30 • S)+(30 • N-30 • E) has been introduced, and data analysis has been carried out [5]. Berkova et al have also proposed to correct the Nagoya muon data for temperature variations in cosmic ray muon flux from meteorological data [6]. Note that the instruments themselves are in the thermostatic chamber and the temperature variation with respect to the trigger rate is negligible.…”
Section: Data Of the Nagoya Muon Telescopementioning
confidence: 99%
“…To remove this variability, for example, the parameter G = (30 • N-30 • S) + (30 • N-30 • E) has been introduced, and data analysis has been carried out [7]. Berkova et al (2016) have proposed to correct the Nagoya muon data for temperature variations in cosmic ray muon flux from meteorological data [8]. However, sometimes the atmospheric temperature of the lower layer differs from the variation in the upper layer (the stratosphere).…”
Section: Data Of the Nagoya Multi-directional Cosmic Ray Telescopementioning
confidence: 99%
“…Porém, estes estão à distâncias maiores da superfície terrestre, logo, para que consigam chegar ao solo, eles precisam percorrer distancias maiores, o que implica em uma probabilidade maior de decaimento desses múons. Assim, na superfície terrestre, o número total dessas partículas detectadas vai ser menor com o aumento da temperatura, resultando em um coeficiente de temperatura negativo (15) (12). Se forem analisados apenas os múons mais energéticos, aqueles que podem ser detectados em experimentos underground, acontece o inverso: como mais múons de todas as energias foram gerados na atmosfera, mais múons com maiores energias foram produzidos.…”
Section: Dependência Com Efeitos Atmosféricosunclassified
“…Tal diferença se deve às diferentes altitudes onde os experimentos foram realizados, ao fato de que em Campinas estamos numa região de anomalia geomagnética e que as temperaturas sob as quais os dados foram coletados foram completamente distintas. Numa tentativa de correção devido à temperatura, foi utilizado um coeficiente de temperatura resultado do experimento realizado em Buckland Park (15)…”
Section: Medidas Para Comparaçõesunclassified