The jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at $$ \sqrt{s} $$
s
= 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum $$ {p}_{\mathrm{T}}^{\mathrm{ch}} $$
p
T
ch
jet intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα, and groomed jet angularities, λα,g, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.
A method for forecasting geomagnetic storms using the realization of the global survey method in real time is presented. The method is based on data from the worldwide network of neutron monitors NMDB. Using this method, we analyze the behavior of components of three-dimensional angular distribution of cosmic rays in the interplanetary medium, which were due to the first two spherical harmonics, over the period from 2013 to 2018. We have established that the main parameters that respond to the arrival of geoeffective disturbances of the interplanetary medium at Earth are changes in amplitudes of zonal (north-south) components of cosmic ray distribution. In order to select effective criteria for identifying predictors of geomagnetic disturbances and their possible temporal variations, we have made a retrospective analysis of the relationship between behaviors of the above components and geomagnetic disturbances occurring during the period of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.