High-sensitivity
differential scanning calorimetry (HS-DSC) thermograms of aqueous
poly(
N
-isopropylacrylamide) (PNIPAM) solutions present
a sharp unimodal endotherm that signals the heat-induced dehydration/collapse
of the PNIPAM chain. Similarly, α,ω-di-
n-
octadecyl-PNIPAM (C18-PN-C18) aqueous solutions exhibit a unimodal
endotherm. In contrast, aqueous solutions of α,ω-hydrophobically
modified PNIPAMs with polycyclic terminal groups, such as pyrenylbutyl
(Py-PN-Py), adamantylethyl (Ad-PN-Ad), and azopyridine- (C12-PN-AzPy)
moieties, exhibit bimodal thermograms. The origin of the two transitions
was probed using microcalorimetry measurements, turbidity tests, variable
temperature
1
H NMR (VT-NMR) spectroscopy, and 2-dimensional
NOESY experiments with solutions of polymers of molar mass (
M
n
) from 5 to 20 kDa and polymer concentrations
of 0.1 to 3.0 mg/mL. The analysis outcome led us to conclude that
the difference of the thermograms reflects the distinct self-assembly
structures of the polymers. C18-PN-C18 assembles in water in the form
of flower micelles held together by a core of tightly packed
n
-C18 chains. In contrast, polymers end-tagged with azopyridine,
pyrenylbutyl, or adamantylethyl form a loose core that allows chain
ends to escape from the micelles, to reinsert in them, or to dangle
in surrounding water. The predominant low temperature (
T
1
) endotherm, which is insensitive to polymer concentration,
corresponds to the dehydration/collapse of PNIPAM chains within the
micelles, while the higher temperature (
T
2
) endotherm is attributed to the dehydration of dangling chains and
intermicellar bridges. This study of the two phase transitions of
telechelic PNIPAM homopolymer highlights the rich variety of morphologies
attainable via responsive hydrophobically modified aqueous polymers
and may open the way to a variety of practical applications.