BackgroundSeasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history). This report examined in male Siberian hamsters which of two aspects of photoperiod history – prior melatonin exposure or entrainment state of the circadian system – is critical for generating contingent responses to a common photoperiodic signal.ResultsIn Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant.ConclusionsThe interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian entrainment state contributes minimally to the interpretation of melatonin signals.