Beam wander of an Airy beam with a spiral phase in turbulence is investigated. Using the Wigner distribution function, analytical expressions for the second-order moments and second central moments of an Airy beam with a spiral phase in turbulence are derived. A general expression of the beam wander for an Airy beam with a spiral phase is obtained. Based on the derived formula, various factors that impact on the beam wander are illustrated numerically. The results show that increasing the topological charge and the characteristic scale, or decreasing the exponential truncation factor, can be used to decrease the beam wander.