The emergence of planar electroluminescent diodes (including polymer light‐emitting diodes, organic light‐emitting diodes, quantum‐dot light‐emitting diodes, and perovskite light‐emitting diodes) is causing a revolution in displays, lighting, and wearable electronic devices. Continuous advancement in the comprehension and management of charge carrier dynamics in these devices has led to several significant breakthroughs, including diodes with ultrahigh luminance, memory devices, and amplified spontaneous emission. Transient electroluminescence (TrEL) spectroscopy is a relative powerful technology to investigate charge dynamics, including transport, distribution, and storage of charge carriers, in electrically‐driven planar light‐emitting diodes (LEDs). The aim of this review is to revisit the principle and applications of TrEL spectroscopy in planar electroluminescent diodes, and to evaluate the reliability of various parameters extracted using this technology. A particular focus is on electroluminescence response time, charge‐carrier transport and storage, and exciton species. First, the principle and equipment system of the TrEL, as well as specific attention during TrEL measurements are described in detail, following by the applications TrEL spectroscopy in planar LEDs. Further development on the TrEL technology is discussed in the third section. Finally, a summary and outlook for the TrEL are shown and challenges faced by the TrEL spectroscopy are also highlighted.