Graphene (including its derivatives)-reinforced polymer composites (GRPCs) have been drawing tremendous attention from academic and industrial communities for developing smart materials and structures. Such interest stems from the excellent combination of the mechanical and electrical properties of these composites while keeping the beneficial intrinsic attributes of the polymers, including flexibility, easy processability, low cost and good biological and chemical compatibility. The electromechanical performances of these GRPCs are of great importance for the design and optimization of engineering structures and components. Extensive work has been devoted to this topic. This paper reviews the recent studies on the electromechanical behaviors of GRPCs. First the methods and techniques to manufacture graphene and GRPCs are introduced, in which the pros and cons of each method are discussed. Then the experimental examination and theoretical modeling on the electromechanical behaviors of the nanocomposites are presented and discussed.