Modern mobile networks exhibit a complex heterogeneous structure. To enhance the Quality of Service (QoS) in these networks, intelligent control mechanisms should be implemented. These functions are based on the processing of large amounts of data and feature extraction. One such feature is information about user mobility. However, directly determining user mobility remains challenging. To address this issue, this study proposes an approach based on multi-linear data processing. The user mobility is proposed to determine, using the multi-linear data, about the changing of the Signal-to-Interference-plus-Noise-Ratio (SINR). SINR varies individually for each user over time, relative to the network’s base stations. It is natural to represent these data as a tensor. A tensor-based preprocessing step employing Canonical Polyadic Decomposition (CPD) is proposed to extract user mobility information and reduce the data volume. In the next step, using the DBSCAN algorithm, users are clustered according to their mobility patterns. Subsequently, users are clustered based on their mobility patterns using the DBSCAN algorithm. The proposed approach is evaluated utilizing data from Network Simulator 3 (NS-3), which simulates a portion of the mobile network. The results of processing these data using the proposed method demonstrate superior performance in determining user mobility.