Recently, bidirectional quantum teleportation has attracted a great deal of research attention. However, existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments. In this paper, we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger (GHZ) states based on controled-not (CNOT) operation and single-qubit measurement. Then, we generalize it to the teleportation of multi-qubit GHZ states. Further, we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel, then we obtain the fidelity of the teleportation. Finally, we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement, which shows an effective enhancement of the teleportation fidelity.
In order to solve the problem of decreased navigation performance of the Global Navigation Satellite System (GNSS)/inertial navigation system (INS) integrated navigation systems in GNSS-denied environments, and to improve the navigation accuracy and robustness of the navigation system, a novel adaptive federated filter with a feedback scheme for a GNSS/INS/visual odometry (VO) integrated navigation system is proposed in this paper. A visual-inertial odometry system model with a multi-state constraint Kalman filter structure based on a polar geometry and trifocal tensor geometry between different images is established, which can provide better navigation accuracy in GNSS-denied environments. Moreover, a new method to obtain the information allocation factor according to the different navigation performances of local filters is deduced in this paper, which has low computational complexity and a simple structure. Meanwhile, an abnormal measurement detection algorithm based on fuzzy logic is proposed to detect the abnormal measurements of local filters. The results of the vehicle experiment with the publicly available real-world KITTI dataset show that the proposed algorithm can obtain reliable navigation results in GNSS-denied environments and improve the navigation accuracy and robustness of the GNSS/INS/VO integrated navigation system.
In target tracking wireless sensor network, choosing the proper working nodes can not only minimize the number of active nodes, but also satisfy the tracking reliability requirement. However, most existing works focus on selecting sensor nodes which are the nearest to the target for tracking missions and they did not consider the correlation of the location of the sensor nodes so that these approaches can not meet all the goals of the network. This work proposes an efficient and adaptive node selection approach for tracking a target in a distributed wireless sensor network. The proposed approach combines the distance-based node selection strategy and particle filter prediction considering the spatial correlation of the different sensing nodes. Moreover, a joint distance weighted measurement is proposed to estimate the information utility of sensing nodes. Experimental results show that EANS outperformed the state-of-the-art approaches by reducing the energy cost and computational complexity as well as guaranteeing the tracking accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.