“…First, the low-rank tensor estimation has attracted much recent attention from machine learning and statistics communities. Various methods were proposed, including the convex relaxation (Mu et al, 2014;Raskutti et al, 2019;Tomioka et al, 2011), projected gradient descent (Rauhut et al, 2017;Chen et al, 2019a;Ahmed et al, 2020;Yu and Liu, 2016), gradient descent on the factorized model (Han et al, 2020b;Cai et al, 2019;Hao et al, 2020), alternating minimization (Zhou et al, 2013;Jain and Oh, 2014;Liu and Moitra, 2020;Xia et al, 2020), and importance sketching (Zhang et al, 2020a). Moreover, when the target tensor has order two, our problem reduces to the widely studied low-rank matrix recovery/estimation (Recht et al, 2010;Li et al, 2019;Ma et al, 2019;Sun and Luo, 2015;Tu et al, 2016;Wang et al, 2017;Zhao et al, 2015;Zheng and Lafferty, 2015;Charisopoulos et al, 2021;Luo et al, 2020;Bauch et al, 2021).…”