The problem of recovering a sparse signal x ∈ R n from a relatively small number of its observations of the form y = Ax ∈ R k , where A is a known matrix and k ≪ n, has recently received a lot of attention under the rubric of compressed sensing (CS) and has applications in many areas of signal processing such as data compression, image processing, dimensionality reduction, etc. Recent work has established that if A is a random matrix with entries drawn independently from certain probability distributions then exact recovery of x from these observations can be guaranteed with high probability. In this paper, we show that Toeplitz-structured matrices with entries drawn independently from the same distributions are also sufficient to recover x from y with high probability, and we compare the performance of such matrices with that of fully independent and identically distributed ones. The use of Toeplitz matrices in CS applications has several potential advantages: (i) they require the generation of only O(n) independent random variables; (ii) multiplication with Toeplitz matrices can be efficiently implemented using fast Fourier transform, resulting in faster acquisition and reconstruction algorithms; and (iii) Toeplitz-structured matrices arise naturally in certain application areas such as system identification.
Identification of time-varying linear systems, which introduce both time-shifts (delays) and frequencyshifts (Doppler-shifts), is a central task in many engineering applications. This paper studies the problem of identification of underspread linear systems (ULSs), whose responses lie within a unit-area region in the delay-Doppler space, by probing them with a known input signal. It is shown that sufficiently-underspread parametric linear systems, described by a finite set of delays and Doppler-shifts, are identifiable from a single observation as long as the time-bandwidth product of the input signal is proportional to the square of the total number of delay-Doppler pairs in the system. In addition, an algorithm is developed that enables identification of parametric ULSs from an input train of pulses in polynomial time by exploiting recent results on sub-Nyquist sampling for time delay estimation and classical results on recovery of frequencies from a sum of complex exponentials. Finally, application of these results to super-resolution target detection using radar is discussed. Specifically, it is shown that the proposed procedure allows to distinguish between multiple targets with very close proximity in the delay-Doppler space, resulting in a resolution that substantially exceeds that of standard matched-filtering based techniques without introducing leakage effects inherent in recently proposed compressed sensing-based radar methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.