Recent results show that a relatively small number of random projections of a signal can contain most of its salient information. It follows that if a signal is compressible in some orthonormal basis, then a very accurate reconstruction can be obtained from random projections. We extend this type of result to show that compressible signals can be accurately recovered from random projections contaminated with noise. We also propose a practical iterative algorithm for signal reconstruction, and briefly discuss potential applications to coding, A/D conversion, and remote wireless sensing.
The problem of recovering a sparse signal x ∈ R n from a relatively small number of its observations of the form y = Ax ∈ R k , where A is a known matrix and k ≪ n, has recently received a lot of attention under the rubric of compressed sensing (CS) and has applications in many areas of signal processing such as data compression, image processing, dimensionality reduction, etc. Recent work has established that if A is a random matrix with entries drawn independently from certain probability distributions then exact recovery of x from these observations can be guaranteed with high probability. In this paper, we show that Toeplitz-structured matrices with entries drawn independently from the same distributions are also sufficient to recover x from y with high probability, and we compare the performance of such matrices with that of fully independent and identically distributed ones. The use of Toeplitz matrices in CS applications has several potential advantages: (i) they require the generation of only O(n) independent random variables; (ii) multiplication with Toeplitz matrices can be efficiently implemented using fast Fourier transform, resulting in faster acquisition and reconstruction algorithms; and (iii) Toeplitz-structured matrices arise naturally in certain application areas such as system identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.