Wavelet-based statistical signal processing techniques such as denoising and detection typically model the wavelet coefficients as independent or jointly Gaussian. These models are unrealistic for many real-world signals. In this paper, we develop a new framework for statistical signal processing based on wavelet-domain hidden Markov models (HMM's) that concisely models the statistical dependencies and non-Gaussian statistics encountered in real-world signals. Wavelet-domain HMM's are designed with the intrinsic properties of the wavelet transform in mind and provide powerful, yet tractable, probabilistic signal models. Efficient expectation maximization algorithms are developed for fitting the HMM's to observational signal data. The new framework is suitable for a wide range of applications, including signal estimation, detection, classification, prediction, and even synthesis. To demonstrate the utility of wavelet-domain HMM's, we develop novel algorithms for signal denoising, classification, and detection. Index Terms-Hidden Markov model, probabilistic graph, wavelets. 1053-587X/98$10.00 © 1998 IEEE Matthew S. Crouse (S'93) received the B.S.E.E. degree (magna cum laude) from Rice University, Houston, TX, in 1993. He received the M.S.E.E. degree from University of Illinois, Urbana, in 1995 and is presently a Ph.D. student in electrical and computer engineering at Rice University. His research interests include wavelets, fractals, and statistical signal and image processing. Robert D. Nowak (M'95) received the B.S. (with highest distinction), M.S., and Ph.D. degrees in electrical engineering from the University
This paper introduces an expectation-maximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with low-complexity, expressed in the wavelet coefficients, taking advantage of the well known sparsity of wavelet representations. Previous works have investigated wavelet-based restoration but, except for certain special cases, the resulting criteria are solved approximately or require demanding optimization methods. The EM algorithm herein proposed combines the efficient image representation offered by the discrete wavelet transform (DWT) with the diagonalization of the convolution operator obtained in the Fourier domain. Thus, it is a general-purpose approach to wavelet-based image restoration with computational complexity comparable to that of standard wavelet denoising schemes or of frequency domain deconvolution methods. The algorithm alternates between an E-step based on the fast Fourier transform (FFT) and a DWT-based M-step, resulting in an efficient iterative process requiring O(N log N) operations per iteration. The convergence behavior of the algorithm is investigated, and it is shown that under mild conditions the algorithm converges to a globally optimal restoration. Moreover, our new approach performs competitively with, in some cases better than, the best existing methods in benchmark tests.
Wireless sensor networks are capable of collecting an enormous amount of data over space and time. Often, the ultimate objective is to derive an estimate of a parameter or function from these data. This paper investigates a general class of distributed algorithms for "in-network" data processing, eliminating the need to transmit raw data to a central point. This can provide significant reductions in the amount of communication and energy required to obtain an accurate estimate. The estimation problems we consider are expressed as the optimization of a cost function involving data from all sensor nodes. The distributed algorithms are based on an incremental optimization process. A parameter estimate is circulated through the network, and along the way each node makes a small adjustment to the estimate based on its local data. Applying results from the theory of incremental subgradient optimization, we show that for a broad class of estimation problems the distributed algorithms converge to within an -ball around the globally optimal value. Furthermore, bounds on the number incremental steps required for a particular level of accuracy provide insight into the trade-off between estimation performance and communication overhead. In many realistic scenarios, the distributed algorithms are much more efficient, in terms of energy and communications, than centralized estimation schemes. The theory is verified through simulated applications in robust estimation, source localization, cluster analysis and density estimation.
Recent results show that a relatively small number of random projections of a signal can contain most of its salient information. It follows that if a signal is compressible in some orthonormal basis, then a very accurate reconstruction can be obtained from random projections. We extend this type of result to show that compressible signals can be accurately recovered from random projections contaminated with noise. We also propose a practical iterative algorithm for signal reconstruction, and briefly discuss potential applications to coding, A/D conversion, and remote wireless sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.