“…[133][134][135][136] In this case, the THz generation occurs due to nonlinear optical processes 134 as well as the heat redistribution inside metal due to electron heating by an optical excitation. 137,138 However, the emitted THz power of the standalone metal metasurface is relatively low compared with the plasmonic PCA 69 and even to the surface photo-Dember THz emitter 136 and amounts, on average, to 0.15 mW, corresponding to an optical-to-THz conversion efficiency of up to 0.01% at 5.8 THz. 135 Furthermore, both metallic and dielectric metasurface configurations can be designed to effectively interact with THz radiation and thus can be used in ultrasensitive THz sensors, THz absorbers, highly selective THz detectors, tunable THz field modulators, [139][140][141][142] and THz mirrors, 143 as well as to control a wavefront at THz frequency, 144 etc.…”