Electron photoemission and ponderomotive acceleration by surface enhanced optical fields is considered as a plausible mechanism of terahertz radiation from metallic nanostructures under ultrafast laser excitation. To verify this mechanism, we studied experimentally terahertz emission from an array of gold nanorods illuminated by intense (~10–100 GW/cm
2
) femtosecond pulses of different central wavelengths (600, 720, 800, and 1500 nm). We found for the first time that the order of the dependence of the terahertz fluence on the laser intensity is, unexpectedly, almost the same (~4.5–4.8) for 720, 800, and 1500 nm and somewhat higher (~6.6) for 600 nm. The results are explained by tunneling currents driven by plasmonically enhanced laser field. In particular, the pump-intensity dependence of the terahertz fluence is more consistent with terahertz emission from the sub-cycle bursts of the tunneling current rather than with the ponderomotive mechanism.
Plasmonic chiral metasurfaces with pinwheel-like structures are fabricated on silver films using a focused ion-beam milling technique. In time-domain spectroscopy, we observe terahertz (THz) wave emission from metasurfaces irradiated by a near-infrared Ti:Sapphire ultra-short pulsed laser. The origin of the THz wave generation is likely to be tunnelling ionization accompanied with photoelectron acceleration by ponderomotive force. Numerical simulation is carried out toward improvement of the chiral metasurfaces for better emission of circularly polarized THz waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.