We propose an approach to the retrieval of entities that have a specific relationship with the entity given in a query. Our research goal is to investigate whether related entity finding problem can be addressed by combining a measure of relatedness of candidate answer entities to the query, and likelihood that the candidate answer entity belongs to the target entity category specified in the query. An initial list of candidate entities, extracted from top ranked documents retrieved for the query, is refined using a number of statistical and linguistic methods. The proposed method extracts the category of the target entity from the query, identifies instances of this category as seed entities, and computes similarity between candidate and seed entities. The evaluation was conducted on the Related Entity Finding task of the Entity Track of TREC 2010, as well as the QA list questions from TREC 2005 and 2006. Evaluation results demonstrate that the proposed methods are effective in finding related entities.