Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL) scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry.
Convergence and Hybrid Information Technologies 414 frequency EEG activity and each of HRV, measured as the standard deviation of all normal RR intervals (SDNN) and salivary cortisol during several different conditions. Our results suggest that inter-individual differences in stress can be reliably assessed by EEG.
Abstract. Resveratrol (3,4',5 tri-hydroxystilbene), a naturally occurring polyphenolic compound highly enriched in grapes and red wine, has been shown to induce anti-proliferation and apoptosis of human cancer cell lines. Resveratrol-induced dose-dependent apoptotic cell death in colon carcinoma cells, was measured by FACS analysis. Treatment of HT29 human colon carcinoma cells with resveratrol was found to induce a number of signature ER stress markers; phosphorylation of eukaryotic initiation factor-2α (eIF-2α), ER stress-specific XBP1 splicing and CCAAT/enhancer-binding proteinhomologous protein (CHOP). In addition, resveratrol induced up-regulation of glucose-regulated protein (GRP)-78, suggesting the induction of ER stress. Furthermore, the inhibition of caspase-4 activity by z-LEVD-fmk significantly reduced resveratrol-induced apoptosis. Taken together, the present study therefore provides strong evidence to support an important role of ER stress response in mediating the resveratrol-induced apoptosis.
PurposeWith the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues.MethodsThree types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens.ResultsGroup C presented the lowest water contact angle (62.89±5.66 θ), highest surface energy (45±1.2 mN/m), and highest surface roughness (Ra=22.351±2.766 µm). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue.ConclusionsMicrogrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.