Manually controlling siRNA activity is an essentially important way to spatiotemporally investigate gene expression and function. Owing to ease of operation and precise manipulation, light can be used for controlled regulation of siRNA-induced gene silencing. Here, we developed a series of caged siRNAs with folic acid modification at the 5' terminus of the antisense strand of the siRNA through a photolabile linker. The attachment of the folic acid moiety temporarily masked the corresponding siRNA activity. Upon illumination, these caged siRNAs were activated, and their gene silencing activities were restored. Based on this strategy, we successfully photomodulated gene expression of both an exogenous gene (for green fluorescent protein, GFP) and an endogenous gene (for mototic kinesin-5, Eg5) in cells.