We conducted surveys of termite assemblages and tree trunks damaged by termites in teakwood (Tectona grandis L.f.) plantations. The surveys were conducted in five-, six-, and nine-year-old plantations. We used a standardized belt-transect to collect termites and build tree inventories. Data of collected termites at the genus and functional-group levels and termites’ diversity between plantations were compared with their attack rate. The results showed that four genera of soil recycler termites belonging to groups IIf and III were present across the plantations. Distribution analysis suggested that termite communities might develop from a stochastic distribution to a nonrandom co-occurrence distribution over time. Diversity analysis showed an increased nestedness-resultant diversity contribution to the total dissimilarity over time. Observed attacks on tree trunks were superficial and limited to the outer bark, with group IIf as the main contributor. Furthermore, the level of damage done by termites to tree trunks was positively correlated with increases in the group IIf occupancy area and overgrown understory vegetation. Plantation management by maintaining an adequate understory might suppress termite attacks on fast-growing teakwood, although in the case of our study, termite attacks are inevitable when termites from group IIf were already present.