SUMMARY
Intertidal mudflats are highly productive ecosystems that impose severe environmental challenges on their occupants due to tidal oscillations and extreme shifts in habitat conditions. Reproduction on mudflats requires protection of developing eggs from thermal and salinity extremes,O2 shortage, dislodgement by currents, siltation and predation. Mudskippers are air-breathing, amphibious fishes, and one of few vertebrates that reside on mudflats. They lay their eggs in mud burrows containing extremely hypoxic water, raising the question of how the eggs survive. We found that the Japanese mudskipper Periophthalmus modestus deposits its eggs on the walls of an air-filled chamber within its burrow. To ensure adequate O2 for egg development, the burrow-guarding male mudskipper deposits mouthfuls of fresh air into the egg chamber during each low tide, a behaviour that can be upregulated by egg-chamber hypoxia. When egg development is complete the male, on a nocturnal rising tide, removes the egg-chamber air and releases it outside the burrow. This floods the egg chamber and induces egg hatching. Thus, P. modestus has developed a reproductive strategy that allows it to nurture eggs in this severe habitat rather than migrating away from the mudflat. This requires that mudskipper eggs be specialized to develop in air and that the air-breathing capacity of the egg-guarding male be integrated in a complex behavioural repertoire that includes egg guarding, ferrying air to and from the egg chamber, and sensing O2 levels therein, all in concert with the tidal cycle.