The method described in this work allows to determine the optimal distribution of pulses of digital signal as well as the non-linear mathematical model based on a multiple regression statistical analysis, which are specialized to an effective and low-cost testing of functional parameters in analog electronic circuits. The aim of this concept is to simplify the process of analog circuit specification validation and minimize hardware implementation, time and memory requirements during the testing stage. This strategy requires simulations of the analyzed analog electronic circuit; however, this effort is done only once -before the testing stage. Then, validation of circuit specification can be obtained after a quick, very low-cost procedure without time consuming computations and without expensive external measuring equipment usage. The analyzed test signature is a time response of the analog circuit to the stream of digital pulses for which distributions were determined during evolutionary optimization cycles. Besides, evolutionary computations assure determination of the optimal form and size of the non-linear mathematical formula used to estimate specific functional parameters. Generally, the obtained mathematical model has a structure similar to the polynomial one with terms calculated by means of multiple regression procedure. However, a higher ordered polynomial usage makes it possible to reach non-linear estimation model that improves accuracy of circuit parametric identification. It should be noted that all the evolutionary calculations are made only at the before test stage and the main computational effort, for the analog circuit specification test design, is necessary only once. Such diagnosing system is fully synchronized by a global digital signal clock that precisely determines time points of the slopes of input excitation pulses as well as acquired output signature samples. Efficiency of the proposed technique is confirmed by results obtained for examples based on analog circuits used in previous (and other) publications as test benchmarks.