For more than 100 years, optical atomic/molecular frequency references have played important roles in science and technology, and provide standards enabling precision measurements. Frequency-stable optical sources have been central to experimental tests of Einstein's relativity, and also serve to realize our base unit of length. The technology has evolved from atomic discharge lamps and interferometry, to narrow atomic resonances in laser-cooled atoms that are probed by frequency-stabilized cw lasers that in turn control optical frequency synthesizers (combs) based on ultra-fast mode-locked lasers. Recent technological advances have improved the performance of optical frequency references by almost four orders of magnitude in the last eight years. This has stimulated new enthusiasm for the development of optical atomic clocks, and allows new probes into nature, such as searches for time variation of fundamental constants and precision spectroscopy.