a b s t r a c tConcrete filled steel hollow structural (CFS) sections are an increasingly popular means to support large compressive loads in buildings. Whilst the response of unprotected CFS sections during a fire is reasonably well researched, their post-fire residual structural performance is less well established. A better understanding of the response of fire-damaged CFS columns is needed to enable better performance-based structural fire engineering of buildings incorporating CFS sections. This paper presents post-fire residual compression tests on unprotected and protected CFS columns along with control tests on six unheated sections. The tests confirm that as the maximum exposed temperature within the cross-section increases, the residual strength capacity, ductility and axial-flexural stiffness decrease. The data are subsequently used to assess the ability to predict the residual capacity of CFS columns after fires, using available post-fire material models and in-fire and ambient structural models.