Syrian hamsters are photoperiodic rodents in which reproduction, including testicular function, is stimulated by long photoperiod exposure and curtailed by exposure to a short photoperiod. The objectives of this study were to characterize the testis histomorphometrically and to determine the role of the proliferation and apoptosis phenomena in the recovery of the seminiferous epithelium during spontaneous recrudescence after exposure to short photoperiod. The study was performed using conventional light microscopy, proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling staining, image analysis software, and transmission electron microscopy in three recrudescence groups: initial recrudescence (IR), advanced recrudescence (AR) and total recrudescence (TR). The results morphometrically pointed to the gradual recovery of the testicular and tubular volumes, as well as of the seminiferous epithelium. Among the IR and AR groups, the increase in testicular and tubular volumes was accompanied by an increase in tubular diameter and length, with an increase in interstitial volume. From AR to TR, there was an increase in the tubular and total volumes, but, in this case, with a gradual increase in tubular diameter. Recovery of the seminiferous epithelium was accompanied by changes in apoptosis and proliferation activities. The first decreased halfway through the process, and the second remained higher than the control levels throughout the recrudescence stage. Alterations in the spermatozoa were ultrastructurally observed, which indicated that spermiogenesis was not yet completely normal. In conclusion, spontaneous testicular recrudescence in Syrian hamster comprises two histomorphometrical phases: the first related to an increase in tubular length and diameter and interstitial volume and the second depending principally on the gradual increase in tubular diameter. The restoration of the seminiferous epithelium is due to apoptosis reaching normal values in the AR group accompanied by higher proliferative activity than that observed in the Control group.