The article presents selected properties of a titanium metallization coating deposited on aluminum nitride (AlN) ceramics surface by means of the friction surfacing method. Its mechanism is based on the formation of a joint between the surface of an AlN ceramics substrate and a thin Ti coating, involving a kinetic energy of friction, which is directly converted into heat and delivered in a precisely defined quantity to the resulting joint. The largest effects on the final properties of the obtained coating include the high affinity of titanium for oxygen and nitrogen and a relatively high temperature for the deposition process. The titanium metallization coating was characterized in terms of surface stereometric structure, thickness, surface morphology, metallographic microstructural properties, and phase structure. The titanium coating has a thickness ranging from 3 to 7 μm. The phase structure of the coating surface (XPS investigated) is dominated by TiNxOy with the presence of TiOx, TiN, metallic Ti, and AlN. The phase structure deeper below the surface (XRD investigated) is dominated by metallic Ti with additional AlN particles originating from the ceramic substrate due to friction by titanium tools.