Conventionally, path delay tests are derived in a delay-independent manner, which causes most faults to be robustly untestable. Many non-robust tests are invalidated by hazards caused primarily due to non-zero delays of off-path circuit elements. Thus, non-robust tests are of limited value when process variations change gate delays. We propose a bounded gate delay model for test quality evaluation and give a novel simulation algorithm that is less pessimistic than previous approaches. The key idea is that certain time-correlations among the multiple transitions at the inputs of a gate cannot cause hazard at its output. We maintain "ambiguity lists" for gates. These are propagated with events, similar to fault lists in a traditional concurrent fault simulation. They are used to suppress erroneous unknown states. Experimental results for ISCAS benchmarks with gate delay variation of ±14% show a miscorrelation of critical path delay as much as 20%.