Purpose
The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Specimens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology.
Methods
The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse and novel psychoactive substances (NPS).
Results
This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs (according to physical–chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), there are already data available on the detection in alternative matrices. However, data on the determination of emerging drugs such as the NPS in alternative biological matrices are more limited.
Conclusions
Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increasingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be continuously explored, especially emphasizing NPS.