Face masks are essential pieces of personal protective equipment for preventing inhalation of airborne pathogens and aerosols. Various face masks are used to prevent the spread of virus contamination, including blue surgical and N95 filtering masks intended for single use. Traditional face masks with self-sanitisation features have an average filtration efficiency of 50% against airborne viruses. Incorporating nanomaterials in face masks can enhance their filtration efficiency; however, using nanomaterials combined with thermal heaters can offer up to 99% efficiency. Bacterial contamination is reduced through a self-sterilisation method that employs nanomaterials with antimicrobial properties and thermoregulation as a sanitisation process. By combining functional nanomaterials with conductive and functional polymeric materials, smart textiles can sense and act on airborne viruses. This research evaluates the evidence behind the effectiveness of nanomaterials and thermoregulation-based smart textiles used in self-sanitising face masks, as well as their potential, as they overcome the shortcomings of conventional face masks. It also highlights the challenges associated with embedding textiles within nanomaterials. Finally, it makes recommendations regarding safety, reusability, and enhancing the protection of the wearer from the environment and underscores the benefits of reusable masks, which would otherwise pollute the environment. These self-sanitising face masks are environmentally sustainable and ideal for healthcare, the food industry, packaging, and manufacturing.