2010 15th National Biomedical Engineering Meeting 2010
DOI: 10.1109/biyomut.2010.5479742
|View full text |Cite
|
Sign up to set email alerts
|

Texture analysis of liver cirrhosis

Abstract: ÖzetçeKaraciğer sirozu, karaciğer hücrelerinin ölmeye ve bunlardan işlevsel düğüm biçiminde dokular oluşmaya bağladığında ortaya çıkar. Fibroz tespitinde iğne biyopsisi altın standarttır. Bu teknik, doğru tanıya ulaşma açısından iyi bir teknik olmasına rağmen, invazif bir yöntem olması dezavantaj oluşturur. Tıbbi görüntü işleme ve yapay zeka tekniklerindeki gelişmeler, karaciğer dokularının sınıflandırılması için bilgisayar destekli tanı sistemlerinin kullanılabilme potansiyelini artırmıştır. Bu çalışmada görü… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
4
0

Year Published

2013
2013
2014
2014

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 17 publications
0
4
0
Order By: Relevance
“…The research group of Gifu University [4], [5] and Kayaalti et al [6] used texture features as input and classified normal/cirrhotic livers by using, respectively, an artificial neural network (ANN) and a support vector machine (SVM). Both groups obtained promising results.…”
Section: Introductionmentioning
confidence: 99%
“…The research group of Gifu University [4], [5] and Kayaalti et al [6] used texture features as input and classified normal/cirrhotic livers by using, respectively, an artificial neural network (ANN) and a support vector machine (SVM). Both groups obtained promising results.…”
Section: Introductionmentioning
confidence: 99%
“…The research group of Gifu University [4] [5] and Kayaalti et al [6] used texture features as input; they classified normal/cirrhotic liver by Artificial Neural Network (ANN) and Support Vector Machine (SVM), respectively. Both of them obtained high accuracy classification result.…”
Section: Introductionmentioning
confidence: 99%
“…Wang et al [4] used the texture analyze with co-occurrence matrix method to analyze ultrasonograms of normal or diseased livers, although they proved the texture analysis can help cirrhosis diagnosis, the diagnostic accuracy was not yet satisfied. The research group of Gifu University [5][6] [7] and Kayaalti et al [8] used texture features as input, they classified normal/cirrhotic liver by Artificial Neural Network (ANN) and Support Vector Machine (SVM) respectively. Both of them obtained high accuracy classification result.…”
Section: Introductionmentioning
confidence: 99%