ÖzetçeKaraciğer sirozu, karaciğer hücrelerinin ölmeye ve bunlardan işlevsel düğüm biçiminde dokular oluşmaya bağladığında ortaya çıkar. Fibroz tespitinde iğne biyopsisi altın standarttır. Bu teknik, doğru tanıya ulaşma açısından iyi bir teknik olmasına rağmen, invazif bir yöntem olması dezavantaj oluşturur. Tıbbi görüntü işleme ve yapay zeka tekniklerindeki gelişmeler, karaciğer dokularının sınıflandırılması için bilgisayar destekli tanı sistemlerinin kullanılabilme potansiyelini artırmıştır. Bu çalışmada görüntü analizini kullanarak sirozun tanısında yardımcı olacak bir takım objektif ölçüler üretmeyi amaçladık. Sirozlu ve sağlıklı parankima doku bölgesini ayırt etmek için, karaciğer bilgisayarlı tomografi (BT) görüntülerinin renk düzeyi tekrar oluş matrisi (Gray Level Cooccurrence Matrix, GLCM) den hesaplanan ikinci dereceden doku (texture) özellikleri ve birinci dereceden istatistiki doku özelliklerini kullandık. Ardından elde edilen tüm bu özellikler kullanılarak destek vektör makineleri (DVM) ile sağlıklı ve sirozlu kişilerin karaciğer BT görüntüleri sınıflandırılmıştır. 10 kat çapraz geçerlilik yöntemi ile elde edilen en yüksek sınıflandırma başarısı %85.19 olarak hesaplanmıştır.
AbstractLiver with cirrhosis emerges when the cells of liver begin to die and the tissues become a functional knot from these. In the diagnosis of fibrosis, the needle biopsy is a golden standard. Although this technique is a good techique in reaching accurate diagnosis, its being an invasive method arises disadvantage. The developments in medical image processing and artificial intelligence techniques have advanced the potential of using diagnosis system in classification of liver tissues. In this study, we have aimed at producing some objective measures using image analysis, which will be of assistance in the diagnosis of cirrhosis. In order to differentiate between regions of liver with cirrhosis and healthy parenchymal tissues, we have used first order statistical texture features and second order texture features computed from gray level cooccurrence matrix of liver computerized tomography (CT) images. Then liver CT images of healthy people and people with cirrhosis have been classified with support vector machines (SVM) by using all these acquired features. The most successful classification has been calculated as 85.19% with the method of 10 fold crossvalidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.