2019
DOI: 10.25126/jitecs.20194168
|View full text |Cite
|
Sign up to set email alerts
|

Texture Feature On Determining Quantity of Soil Organic Matter For Patchouli Plant Using Backpropagation Neural Network

Abstract: Patchouli (Pogostemon Cablin Bent) has higher PA (Patchouli Alcohol) and oil production if grown in soil containing 75% organic matter. One way that can be used to detect the content of organic matter is to use soil images. The problem in the use of soil images is the color of the soil that is almost similar, namely the gradation between dark brown to black. Therefore, color features are not enough to be used as input in the recognition process. For this purposes, texture features are added in this study in ad… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 7 publications
0
2
0
1
Order By: Relevance
“…Metode ini termasuk kedalam metode supervised learning yang dapat digunakan dalam permasalahan klasifikasi [22]. Backpropagation memiliki 3 tahap dalam pembelajarannya, yaitu perambatan maju, perambatan mundur dan penyesuaian bobot [23]. Pengujian yang dilakukan terhadap backpropagation adalah pengujian parameter.…”
Section: Gambar 3 Ilustrasi Cross Validation Dengan K = 10unclassified
“…Metode ini termasuk kedalam metode supervised learning yang dapat digunakan dalam permasalahan klasifikasi [22]. Backpropagation memiliki 3 tahap dalam pembelajarannya, yaitu perambatan maju, perambatan mundur dan penyesuaian bobot [23]. Pengujian yang dilakukan terhadap backpropagation adalah pengujian parameter.…”
Section: Gambar 3 Ilustrasi Cross Validation Dengan K = 10unclassified
“…A neural network consists of an input layer, zero or more hidden layer, and an output layer. Information on neurons will be propagated through each layer, starting from the input layer, all the way to the output layer [14] [15]. The propagation is done by calculating the weighted sum on each neuron, which then used as the input value for the activation function used.…”
Section: A Neural Network and Backpropagationmentioning
confidence: 99%
“…GLCM is a matrix that describes the frequency of occurrence of pairs of two pixels with a certain intensity in a certain distance and direction in the image [8]. The direction of the orientation of the angle formed in four directions with an interval of 45°, which is 0°, 45°, 90°, and 135° [9] Fig. 6 Pseudo-code of calculating GLCM features 5.…”
Section: Feature Extraction By Gray Level Co-occurrence Matrixmentioning
confidence: 99%