In this study, both untreated rice straw stem fibers and fibers treated with sodium hydroxide were used. Maleic anhydride polypropylene (MAPP) was used to enhance adhesion of the fiber with the matrix. Composites were prepared with various combinations of fiber, ranging from 10 wt.% to 25 wt.%, and polypropylene in addition to 2 wt.% MAPP. These composites were then tested for acoustical, mechanical, thermal, infrared spectral, and morphological properties. The fibers were treated by being soaked in 5 wt.% NaOH solution at 30 C for 30 min. The composites with treated fiber exhibited higher thermal stability, tensile strength, sound absorption, and fiber-matrix adhesion than the composites with untreated fiber. The results of sound absorption measurements showed that the composites with higher fiber content had better sound absorption than the composites with lower fiber content. The changes in the peaks in the Fourier transform infrared spectrum indicate that the alkaline treatment removed hemicellulose and lignin from the rice straw stem fibers.