RUNX3 is believed to have tumour suppressor properties in several cancer types. Inactivation of RUNX3 has been shown to occur by methylation-induced transcriptional silencing and by mislocalization of the protein to the cytoplasm. The aim of this study was to examine the clinical significance of RUNX3 expression in a large series of colorectal cancers using immunohistochemistry and tissue arrays. With advancing tumour stage, expression of RUNX3 in the nucleus decreased, whereas expression restricted to the cytoplasmic compartment increased. Nuclear RUNX3 expression was associated with significantly better patient survival compared to tumours in which the expression of RUNX3 was restricted to the cytoplasm (P ¼ 0.025). These results support a role for RUNX3 as a tumour suppressor in colorectal cancer. The RUNX3 gene encodes a protein that belongs to the runt domain family of transcription factors involved in mammalian development pathways (Ito, 2008). RUNX3 protein can mediate the growth suppressive effects of TGF-b by associating with SMAD, a downstream protein in the signalling pathway (Ito and Miyazono, 2003). In RUNX3 knockout mice, the gastric epithelium displays hyperplasia and a reduced sensitivity to TGF-b (Li et al, 2002). The chromosomal locus for RUNX3 (1p36) shows frequent loss of heterozygosity in a variety of cancer types including colon and gastric carcinomas (Ito, 2008). In addition, mutations in RUNX3 have been shown in gastric (Li et al, 2002) and bladder cancers. Recent work from our group has also shown that RUNX3 protein forms a ternary complex with b-catenin/TCF4 . This complex has reduced DNA-binding ability and thus attenuates the level of signalling through the Wnt pathway. The above findings suggest a putative tumour suppressor role for RUNX3 in intestinal tumourigenesis.Other studies have shown methylation-related transcriptional silencing of RUNX3 expression in gastric (Li et al, 2002;Waki et al, 2003), colorectal (CRC) (Goel et al, 2004;Ku et al, 2004) and oesophageal squamous cell (Sakakura et al, 2007) carcinomas. A relatively high frequency of RUNX3 methylation has also been observed in hepatocellular carcinoma and lung, breast and prostate cancers . Mislocalisation of RUNX3 protein to the cytoplasm is another mechanism by which RUNX3 can be inactivated in gastric and breast cancers Lau et al, 2006). Overexpression of the enhancer of zeste homologue 2 (EZH2) protein was recently shown to downregulate RUNX3 expression by increasing histone H3 methylation, thus providing yet another mechanism for inactivation of RUNX3 (Fujii et al, 2008). As might be expected, if RUNX3 were behaving as a tumour suppressor, the decreased expression of this protein in gastric (Wei et al, 2005), lung (Araki et al, 2005) and oesophageal (Sakakura et al, 2007) cancers has been associated with worse patient outcome.As the TGF-b signalling pathway plays an important role in the growth control of human colonic epithelial cells (Xu and Pasche, 2007), RUNX3 may also act as a tumour suppressor gene in this tis...