The topical application of lactic acid bacteria (LAB) is recognized as a useful approach to improve skin health. This work aims to characterize by a multidisciplinary approach, the wound healing, anti-inflammatory, anti-pathogens and proteomic effects of six LAB lysates, belonging to the genus Lactobacillus. Our results demonstrated that the lysates of tested LAB stimulated the proliferation of keratinocytes, and that L. plantarum SGL 07 and L. salivarius SGL 19 accelerated the re-epithelization by inducing keratinocyte migration. The bacterial lysates also reduced the secretion of specific pro-inflammatory mediators from keratinocytes. Furthermore, viable L. salivarius SGL 19 and L. fermentum SGL 10 had anti-pathogenic effects against S. aureus and S. pyogenes, while L. brevis SGL 12 and L. paracasei SGL 04 inhibited S. aureus and S. pyogenes, respectively. The tested lactobacilli lysates also induced specific proteome modulation of the exposed keratinocytes, involving dysregulation of proteins (such as interleukin enhancer-binding factor 2 and ATP-dependent RNA helicase) and pathways (such as cytokine, NF-kB, Hedgehog, and RUNX signaling) associated with their specific wound healing and anti-inflammatory effects. This study indicates the different potential of selected lactobacilli, suggesting that they may be successfully used in the future together with conventional therapies to bring relief from skin disorders. Abbreviations LAB Lactic acid bacteria TNF-α Tumor necrosis factor-alpha IFN-γ Interferon-gamma PBS Phosphate buffered saline DMEM Dulbecco's modified Eagle's medium MCP-1 Monocyte chemoattractant protein-1 RANTES Regulated on activation, normal T cell expressed and secreted LC-MS/MS Liquid chromatography-tandem mass spectrometry SWATH Sequential window acquisition of all theoretical mass spectra The skin, considered the largest organ of the body, is involved in a variety of functions and acts primarily as a protective barrier preventing the entry of potential pathogens. In particular, skin homeostasis is regulated by microorganisms, the so called skin microbiota, which act on keratinocytes and on their cytokine release, ensuring