Biochemical evidence reported so far suggests that rubber synthesis takes place on the surface of rubber particles suspended in the latex of Hevea brasiliensis. We have isolated and characterized a cDNA clone that encodes a protein tightly bound on a small rubber particle. We named this protein small rubber particle protein (SRPP). Prior to this study, this protein was known as a latex allergen, and only its partial amino acid sequence was reported. Sequence analysis revealed that this protein is highly homologous to the rubber elongation factor and the Phaseolus vulgaris stress-related protein. Southern and Northern analyses indicate that the protein is encoded by a single gene and highly expressed in latex. An allergenicity test using the recombinant protein confirmed that the cloned cDNA encodes the known 24-kDa latex allergen. Neither ethylene stimulation nor wounding changed the transcript level of the SRPP gene in H. brasiliensis. An in vitro rubber assay showed that the protein plays a positive role in rubber biosynthesis. Therefore, it is likely that SRPP is a part of the rubber biosynthesis machinery, if not the rubber polymerase, along with the rubber elongation factor.Rubber (cis-1,4-polyisoprene), an isoprenoid polymer with no known physiological function to the plant, is produced in about 2000 plant species with varying degrees of quality and quantity (1). Rubber is the raw material of choice for heavy duty tires and other industrial uses requiring elasticity, flexibility, and resilience. Hevea brasiliensis has been the only commercial source of natural rubber mainly because of its abundance in the tree, its quality, and the ease of harvesting. The diminishing acreage of rubber plantations and life-threatening latex allergy to Hevea rubber, coupled with an increasing demand, have prompted research interests in the study of rubber biosynthesis and the development of alternative rubber sources.In H. brasiliensis, rubber synthesis takes place on the surface of rubber particles suspended in the latex (the cytoplasm of laticifers). The laticifers are specialized vessels that are located adjacent to the phloem of the rubber tree. When severed during tapping, the high turgor pressure inside the laticifers expels latex containing 30 -50% (w/w) cis-1,4-polyisoprene. The latex can be fractionated by centrifugation into three phases: the top fraction containing mostly rubber particles, the metabolically active middle fraction (called C-serum), and the bottom fraction of mainly vacuole-like organelles called lutoids. More than 240 expressed sequence tags (ESTs) 1 have been identified from the latex of H. brasiliensis 2 Kush et al. (2) have shown differential expression of several rubber biosynthesis-related genes in latex. The rubber elongation factor (REF), an enzyme involved in rubber biosynthesis (3), is highly expressed in laticifers (4). Laticiferous cells actively translate the transcribed genes into proteins. About 200 distinct polypeptides are present in the latex of H. brasiliensis (5). Arokiaraj et al...