The sedimentary history of two stromatoporoid accumulations ‒ an allobiostrome and a parabiostrome–are studied in the shallow water carbonates of the Middle to Upper Devonian Kowala Formation in the Ołowianka Quarry, Holy Cross Mountains, central Poland. Sedimentological and facies observations are accompanied by morphometrical and taphonomical analyses of redeposited stromatoporoid skeletons. Stromatoporoid features, including shape profile, latilaminae arrangement, surface character, dimensions, and preservation state, are interpreted in terms of their original growth habitats and susceptibility to exhumation and transport. Sedimentary features of the studied beds are interpreted with regards to the high-energy processes that lead to their deposition. In the allobiostrome, the original stromatoporoid habitat was located below storm wave base, in a calm setting characterised by a low and stable depositional rate and clear bottom waters. The large scale onshore redeposition of stromatoporoid skeletons from such a setting was only possible due to an extraordinary event causing erosion at considerable depths: a tsunami is the most probable explanation. The sedimentary and textural features of the allobiostromal accumulation, such as clast supported textures and lack of vertical sorting, point to a single act of deposition and high flow velocities, in agreement with the tsunami interpretation. In contrast, the parabiostromal stromatoporoid accumulation does not exhibit any features that would require a non-tempestitic explanation, the default and most probable interpretation of high energy facies interbedding shallow water lagoonal sediments. This comparison has shown that studies of variously developed stromatoporoid beds, and particularly the analysis of morphometric features of stromatoporoid skeletons, can provide a unique opportunity to identify palaeotsunamites, which commonly remain undetected in the sedimentary record, leading to underestimates of their abundance.