The 2011 Tohoku-oki earthquake and tsunami was the most destructive geohazard in Japanese history. However, little is known of the past recurrence of large earthquakes along the Japan Trench. Deep-sea turbidites are potential candidates for understanding the history of such earthquakes. Core samples were collected from three thick turbidite units on the Japan Trench floor near the epicenter of the 2011 event. The uppermost unit (Unit TT1) consists of amalgamated diatomaceous mud (30-60 cm thick) that deposited from turbidity currents triggered by shallow subsurface instability on the lower trench slope associated with strong ground motion during the 2011 Tohoku-oki earthquake. Older thick turbidite units (Units TT2 and TT3) also consist of several amalgamated subunits that contain thick sand layers in their lower parts. Sedimentological characteristics and tectonic and bathymetric settings of the Japan Trench floor indicate that these turbidites also originated from two older large earthquakes of potentially similar to the 2011 Tohoku-oki earthquake. A thin tephra layer between Units TT2 and TT3 constrains the age of these earthquakes. Geochemical analysis of volcanic glass shards within the tephra layer indicate that it is correlative to the Towada-a tephra (AD 915) from the Towada volcano in northeastern Japan. The stratigraphy of the Japan Trench turbidites resembles that of onshore tsunami deposits on the Sendai and Ishinomaki plains, indicating that the cored uppermost succession of the Japan Trench comprises a 1500-year-old record that includes the sedimentary fingerprint of the historical Jogan earthquake of AD 869.
The giant 2011 Tohoku-oki earthquake has been inferred to remobilise fine-grained, young surface sediment enriched in organic matter from the slope into the >7 km deep Japan Trench. Yet, this hypothesis and assessment of its significance for the carbon cycle has been hindered by limited data density and resolution in the hadal zone. Here we combine new high-resolution bathymetry data with sub-bottom profiler images and sediment cores taken during 2012–2016 in order to map for the first time the spatial extent of the earthquake-triggered event deposit along the hadal Japan Trench. We quantify a sediment volume of ~0.2 km3 deposited from spatially-widespread remobilisation of young surficial seafloor slope sediments triggered by the 2011 earthquake and its aftershock sequence. The mapped volume and organic carbon content in sediment cores encompassing the 2011 event reveals that this single tectonic event delivered >1 Tg of organic carbon to the hadal trench. This carbon supply is comparable to high carbon fluxes described for other Earth system processes, shedding new light on the impact of large earthquakes on long-term carbon cycling in the deep-sea.
Two major marine surveys off northern Papua New Guinea (PNG) earlier this year now suggest, when survivors' reports are taken into account, that last summer's disastrous tsunami there was caused by a sediment slump 25 km offshore. The slump was probably the result of seabed shaking from an earthquake. Not only was a sediment slump, or submarine landslide, responsible for the tsunami, according to the data, but the magnitude and wave‐height distribution of the tsunami along the coast were the result of focusing by local seabed morphology.
The conclusions are based on new off‐shore bathymetry, remote operated vehicle (ROV) dive investigations, the time delay between the source earthquake and when the tsunami struck, computer simulation models, and earthquake aftershock distribution. The most critical evidence is in survivors' accounts of the timing of the tsunami relative to the initially felt earthquake and aftershock [see Davies, 1998a].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.