<p class="Abstrak">Penelitian pengolahan sinyal digital yang berfokus pada pengenalan pembicara telah dimulai sejak beberapa dekade yang lalu, dan telah menghasilkan banyak metode-metode pengenalan pembicara. Di antara algoritma pembentukan koefisien ciri yang telah dikembangkan tersebut, ada dua algoritma yang dapat memberikan akurasi yang tinggi jika diterapkan pada sistem, yaitu <em>Mel Frequency Cepstral Coefficient</em> (MFCC) dan <em>Wavelet</em>. Penelitian ini bertujuan untuk menguji dan memilih kanal terbaik dari proses <em>wavelet</em>-MFCC yang dapat dijadikan sebagai koefisien ciri baru untuk diterapkan pada sistem pengenal pembicara. Koefisien ciri baru tersebut kemudian disebut dengan koefisien ciri <em>Wavelet</em>-MFCC. Kofisien ini dibentuk dari merubah kanal hasil dekomposisi <em>wavelet</em>, yaitu kanal aproksimasi (cA), kanal detail (cD), dan penggabungannya (cAcD), menjadi koefisien MFCC. Metode dekomposisi <em>wavelet</em> yang digunakan adalah metode <em>dyadic</em> dengan menerapkan <em>level</em> dekomposisi <em>level</em> 1 dan <em>level</em> 2. Setiap koefisien ciri kemudian menjadi inputan pada sistem pengklasifikasi <em>Hidden Markov Models</em> (HMM). Keluaran dari HMM kemudian dihitung akurasinya dan dianalisis. Dari pengujian yang dilakukan, diperoleh bahwa kanal detail (cD) sebagai ciri dapat memberikan akurasi yang sama dengan menggunakan kanal gabungan (cAcD) dan lebih tinggi dari kanal aproksimasi (cA), dengan akurasi sebesar 95%. Hal ini menunjukkan bahwa, kanal detail pada dekomposisi <em>level</em> 1 menyimpan ciri suara dari setiap pembicara sehingga sudah cukup untuk dijadikan sebagai koefisien ciri. Maka, penggunaan dekomposisi <em>level</em> 1 dan kanal detail cD sebagai ciri <em>Wavelet</em>-<em>MFCC</em> pada sistem pengenalan pembicara dapat meringankan dan mempercepat proses komputasi.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Research in digital signal that focused on speaker recognition has begun since decades ago, and has resulted many speaker recognition methods. there are two algorithms that can provide high accuracy in recognition system, which are Mel Frequency Cepstral Coefficient (MFCC) and Wavelet. the aims of this study is to examine and chose the best channel from wavelet-MFCC process that can be used as new feature coefficient, then called as Wavelet-MFCC features coefficient. The coefficient is built by converting the wavelet decomposition channels, which are approximation (cA), detail (cD), and its combination (cAcD), into the MFCC coefficient. Wavelet dyadic decomposition with level 1 and level 2 of decomposition is applied. Each feature coefficient acts as an input to the HMM classifier. The accuracy of the HMM output is calculated, then analyzed. The obtained results show that the detail chanel (cD) achieve equal accuracy as the combination chanel (cAcD), and higher accuracy compared to aproximation channel (cA), with accuracy 95%. Thus, it can be conclude that the detail channel on level 1 decomposition contains features of each speaker's. Then, cD is enough to be used as a Wavelet-MFCC feature. Thus, its implementation in the SRS can ease and speed up the computing process.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>