Diabetic nephropathy (DN) is a type of nephropathy that is caused by a diabetic condition. Diabetic nephropathy is seen in type 1 and type 2 diabetes. End-stage renal disorders are brought on by DN. Diabetic nephropathy is thought to be linked to metabolic changes in the body. Proteinuria and glomerular filtration rate are the two most crucial diagnostic and prognosis measures for diabetic kidney disease (DKD), yet both have significant disadvantages. Novel biomarkers are thus increasingly required to improve risk factors and detect disease at an early stage. Controlling blood glucose and vital sign like body temperature and blood pressure, reducing cholesterol levels, and blocking the renin-angiotensin system are the standard treatments for diabetic patients. On the other hand, if used too late within the course of the disease, these therapeutic techniques can only provide partial relief from nephropathy.The complicated pathophysiology of the diabetic kidney, which experiences a variety of severe structural, metabolic, and functional alterations, represents one of the most important obstacles to the event of effective therapeutics for DN. Despite these issues, new diabetes models have identified promising treatment targets by identifying the mechanisms that control important functions of podocytes and glomerular endothelial cells. It has been shown in the vast majority of trials that renin-angiotensin system inhibitors combined with integrative therapies work well for DN. Combining sodium-glucose cotransporter-2 inhibitors and renin-angiotensin-aldosterone system blockers is a novel way to slow down the course of DKD by lowering inflammatory and fibrotic indicators brought on by hyperglycemia, which is more effective than using either medicine alone. Aldosterone receptor inhibitors and advanced glycation end-product inhibitors are two recently produced medications that may be used successfully to treat DN.